

차 례

제1장 동력장치의 개요

1.1 항공기 기관의 발달
1.1.1 가스 터빈 기관의 발달
1.2 항공기용 기관의 분류
1.2.1 열기관의 일반적 분류 4
1.2.2 가스 터빈 기관의 분류 4
1.2.3 기타 제트 기관의 분류
1.3 열역학의 기초
1.3.1 단위와 용어
1.3.2 열역학 제 1법칙
1.3.3 유체의 열역학적 특성
1.3.4 작동 유체의 상태 변화
1.3.5 열역학 제 2법칙
1.3.6 왕복기관의 기본 사이클
1.3.7 가스 터빈 기관의 기본 사이클
1.4 가스 터빈 기관의 작동원리
1.4.1 기관 사이클 및 작동 원리
1.4.2 공기의 압력, 온도 및 속도변화
1.5 가스 터빈 기관의 성능
1.5.1 가스 터빈 기관의 출력
1.5.2 추력에 영향을 끼치는 요소 40
1.5.3 가스터빈기관의 효율 40
1.5.4 가스터빈기관의 효율향상방법 41

제2장 가스 터빈 기관

2.1 가스 터빈 기관의 종류와 특성
2.1.1 가스 터빈 기관의 종류 및 분류 43
2.1.2 가스 터빈 기관의 특성 44
2.2 Gas turbine engine의 구조 ······ 45
2.2.1 개요 ~~~~~ 45
2.2.2 공기흡입덕트(Air Inlet Duct)
2.2.3 Compressor
2.2.4 연소실(combustion chamber)
2.2.5 Turbine
2.2.6 Exhaust Section
2.3 연료 계통(Fuel system)
2.3.1 연료(Fuel)
2.3.2 연료 계통(Fuel System)
2.4 윤활유 및 윤활계통
2.4.1 윤활
2.4.2 윤활유
2.4.3 윤활 계통
2.5 시동 및 점화계통 104
2.5.1 시동계통
2.5.2 점화계통(ignition) 107
2.5.3 보조 장비
2.6 그 밖의 계통
2.6.1 소음 감소 장치(noise suppressor)
2.6.2 추력 증가 장치
2.6.3 역추력 장치(thrust reversor)
2.6.4 방빙 계통
2.7 가스 터빈 기관의 비행 성능과 작동
2.7.1 가스 터빈 기관의 비행 성능 120

.

.....

2.7.2 기관의 작동	21
2.7.3 비정상 시동	22
2.7.4 기관의 정격	23
2.7.5 기관의 조절	23
2.8 엔진구조의 재료	24
2.8.1 구조재료 일반	24
2.8.2 각종 금속재료의 개요	24
2.8.3 가스터빈 재료의 특성	26
2.8.4 새로운 내열 합금 재료	27

제3장 기상 보조동력장치

3.1 개요
3.2 APU Engine
3.2.1 Gas Generator 13
3.2.2 형식과 기능
3.3 APU 작동 ······ 13
3.3.1 자동정지(Auto Shutdown)
3.3.2 시동과 정지
3.3.3 Control Panel
3.3.4 화재방지장치
3.3.5 APU의 성능

부 록

항공기 동력장치 여	ᅨ상문제		14	43	3
------------	------	--	----	----	---

제 장 동력장치의 개요

1.1 항공기 기관의 발달

1.1.1 가스 터빈 기관의 발달

(1) 가스 터빈 기관의 초기 단계

- 이집트의 수학자이며 철학자인 Hero는 기원전 100~200년 사이에 반작용
 의 원리를 이용한 Hero's Engine을 발명
- ② 고대 중국에서는 군사 무기로 로켓을 사용
- ③ 17세기 영국에서는 작용과 반작용의 원리를 이용한 "말 없는 마차" 발명
- ④ 19세기 초 영국의 모스(Sanford A Moss)가 가스터빈 기관의 논문을 발표 하고 G.E회사가 가스 터빈 구동 과급기 생산

그림 1.1 헤로의 반작용 실험 기구

⑤ 1937년 영국의 Whittle이 순수한 반작용의 터보 제트기관 개발, 시험대에서 최초의 첫 시운전을 했으며 이것이 미국의 가스터빈 기관의 시초가 됐다.

(2) 가스 터빈 기관의 개발 및 발전 단계

① 1791년 : 영국인 바바에 의해 원리적으로는 현재와 거의 같은 압축기, 연소

실, 터빈을 갖춘 가스터빈 발명

- ② 1872년 : 독일인 스틀체에 의해 다단터빈, 열 교환기까지 갖춘 가스터빈을 설계하여 실험
- ③ 1938년 : 스위스의 브라운 보베리사가 4000kW의 발전용 가스터빈 개발에 성공하여 실용운전 개시
- ④ 1939년 : 독일의 하인켈사에서 HeS-3b의 터보제트를 He-178 항공기에 장착하여 8월 27일 시험비행을 성공하여 세계 첫 제트항공기가 됐다.
- ⑤ 1941년 : 영국의 휘틀이 개발한 ₩-1터보제트를 글로스터 E28/39 실험기
 에 장착, 5월 5일 첫 비행에 성공
- ⑥ 1942년 : 휘틀의 ₩-1기술을 도입하여 GE사의 1-A를 벨 XP-59A 실험
 기에 장착하여 10월 2일 첫 비행 성공
- ⑦ 1945년 : 영국의 글로스터 미쳐기에 롤스로이스사의 트랜트형 터보프롭엔진
 을 장착하고 9월 20일 첫 비행을 성공함으로써 세계최초의 터보프롭 항공기
 가 됐다.
- (3) 민간 항공용 가스터빈의 발달
 - 1952년 : 영국 디하빌랜드사의 Ghost형 원심 터보제트 4대를 탑재한 영국 의 해외 항공(BOAC)의 코밋트 I 형 제트 여객기가 5월부터 취항하여 최초 의 민간 항공용 제트 여객기가 되었으나 1954년 2회의 공중폭발사고로 운 항 중지되었다.
 - ② 1953년 : 영국 롤스로이스사의 Dart형 터보프롭엔진을 비스카운트 항공기에 탑재하여 취항함으로써 세계 최초의 민간 항공용 터보프롭기가 되었다.
 - ③ 1957년 : 프랑스의 수드 항공사가 제조한 알루엣 Ⅱ 헬리콥터가 5월부터 취 항하여 세계 최초의 터빈 헬리콥터가 되었다.
 - ④ 1958년 : 미국 P&W사의 JT3C 터보 제트엔진을 탑재한 팬 아메리칸 항공 사(PAA)의 B707 제트 여객기가 10월 26일부터 운항하여 세계 민간항공에 서의 제트 여객기 시대를 개막했다.
 - ⑤ 1960년 : 영국 롤스로이스사의 Conway형 터보팬을 장착한 B707기와 DC-8 제트 항공기가 취항하여 세계 최초의 저 바이패스비 터보팬 시대를 개막했다.
 - ⑥ 1970년 : P&W사의 JT9D 고 바이패스비 팬엔진을 장착한 PAA의 B747

점보 여객기가 1월 21일 취항함으로써 wide body에 의한 대량 운송시대를 개막했다. 이 엔진의 추력은 약 46000~55000 lbs, BPR은 약 5이다.

⑦ 1976년 : 세계 최초의 초음속 여객기인 콩코드가 영·프 합작으로 1월 21
 일 취항했다. 엔진은 브리스톨 스네크머사의 Olympus 593형 터보제트였다.

(4) 최근의 가스터빈 기관의 발달 동향

- 1970년대에 들어 B747, DC-10, L-1011등의 대형 와이드 바디 운송용 엔진으로서 BPR이 4~6이고 추력이 46000~55000lbs 급의 JT9D, CF6, RB211 등의 대형 고 바이패스비의 터보 팬 엔진이 실용화되어 출력, 고아 음속 순항시의 연료 절감, 엔진 소음감소, 엔진 신뢰성과 정비성의 비약적인 개선을 가져왔다.
- ② 연료 소비율의 대폭적인 감소는 설계, 제조기술의 진보에 의한 각 구성요소의 효율 향상과 내열합금 및 터빈 블레이드와 베인의 냉각기술의 진보에 의한 TIT 상승과 열효율 향상, BPR 증가에 의한 추진효율 향상에 의한 것이다.

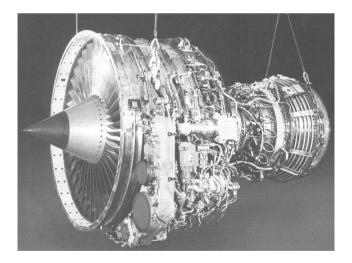


그림 1.2 고 바이패스 터보팬 엔진

③ 과거 30년간에 팬 엔진의 최대 추력은 18000 lbs(약 8t)에서 60000 lbs
 (약 27t)으로, 바이패스비는 1.0에서 6.0으로, 압축기의 압력비는 13에서 40으로, TIT는 1600°F에서 2600°F로, 순항중의 TSFC는 0.80에서 0.50
 으로, 추력 중량비는 4.0에서 6.0으로 향상되고 있다.